Answer:
[tex]\dfrac{17}{2}\sin{\dfrac{3x}{4}}+\dfrac{17}{2}\sin{\dfrac{x}{4}}[/tex]
Step-by-step explanation:
The appropriate identity is ...
[tex]\sin{\alpha}\cos{\beta}=\dfrac{1}{2}(\sin{(\alpha+\beta)}+\sin{(\alpha-\beta)})[/tex]
Filling in α=x/2 and β=x/4, we get ...
[tex]17\sin{(x/2)}\cos{(x/4)}=\dfrac{17}{2}(\sin{(x/2+x/4)}+\sin{(x/2-x/4)})\\\\=\dfrac{17}{2}\sin{\dfrac{3x}{4}}+\dfrac{17}{2}\sin{\dfrac{x}{4}}[/tex]