G(x)= -1/2x+5

A) use the definition of a one-to-one function, to show that G(x) defines a one-to-one function.

B) find the inverse of g(x)

Respuesta :

Answer:

Given [tex]g(x)=\frac{-1}{2}x+5[/tex] we can conclude the following things:

A) [tex]g[/tex] is one-to-one.

B) [tex]g[/tex]'s inverse is given by [tex]g^{-1}(x)=-2(x-5)[/tex].

Step-by-step explanation:

A) If it is one-to-one, then f(a)=f(b) implies only a=b.

The function is [tex]g(x)=\frac{-1}{2}x+5[/tex].

Let's see what [tex]g(a)=g(b)[/tex] implies here.

[tex]g(a)=g(b)[/tex]

[tex]\frac{-1}{2}a+5=\frac{-1}{2}b+5[/tex]

Subtract 5 on both sides:

[tex]\frac{-1}{2}a=\frac{-1}{2}b[/tex]

Multiply both sides by -2:

[tex]a=b[/tex]

This is exactly what we need to show that [tex]g[/tex] is one-to-one.

---------------------------------------------------------------------------------------------

If you look at a visual of [tex]g[/tex] on a graph. You would see it passes the horizontal line test making it one-to-one. (It is is just a diagonal line after all.)

B)

[tex]g(x)=\frac{-1}{2}x+5[/tex]

[tex]y=\frac{-1}{2}x+5[/tex]

The inverse is the swapping of [tex]x[/tex] and [tex]y[/tex] and then we want to remake the new [tex]y[/tex] the subject of the equation.

That is we have to solve the following for [tex]y[/tex]:

[tex]x=\frac{-1}{2}y+5[/tex]

Subtract 5 on both sides:

[tex]x-5=\frac{-1}{2}y[/tex]

Multiply both sides by -2:

[tex]-2(x-5)=y[/tex]

[tex]y=-2(x-5)[/tex]

So [tex]g^{-1}(x)=-2(x-5)[/tex].

--------------------------------------------------------------------------------------------

Let's verify.

So we should get that [tex]g^{-1}(g(x))=x \text{ and } g^{-1}(g(x))=x[/tex].

Let's see what happens:

[tex]g^{-1}(g(x))[/tex]

[tex]g^{-1}(\frac{-1}{2}x+5)[/tex]

[tex]-2(\frac{-1}{2}x+5-5)[/tex]

[tex]-2(\frac{-1}{2}x+0)[/tex]

[tex]-2(\frac{-1}{2}x)[/tex]

[tex]1x[/tex]

[tex]x[/tex] -So that looks good so far.

[tex]g(g^{-1}(x))[/tex]

[tex]g(-2(x-5))[/tex]

[tex]\frac{-1}{2}(-2(x-5))+5[/tex]

[tex](x-5)+5[/tex]

[tex]x-5+5[/tex]

[tex]x+0[/tex]

[tex]x[/tex] -So that looks good.

Both ways check out so we indeed found the inverse of [tex]g[/tex].