a car starts from start to rest and reaches a speed of 40 m/s in 10 s. if acceleration is constant, how fast wil it be moving in 5 s

Respuesta :

Answer:

Car fastly moved in 5s is

[tex]{\bf V_{3}} = {\bf 60}\frac{\bf m}{\bf s}[/tex]

Step-by-step explanation:

Given that a car starts from start to rest

so [tex]V_{1} = 0[/tex] and [tex]T_{1}=0[/tex]

and  given car reaches a speed of 40 m/s in 10 s.

ie, [tex]V_{2} =40[/tex]  and [tex]T_{2} = 10[/tex]

Use the formula

  [tex]The rate of change of velocities=acceleration\times the rate of change of times[/tex]

ie,  [tex]V_{2} - V_{1} = a(T_{2}-T_{1})[/tex]                    

 [tex]V_{1} = 0[/tex] ,  [tex]T_{1} = 0[/tex]  and a = constant

So,  [tex]a = \frac {V_{2}}{T_{2}}[/tex]

       [tex]a = \frac {40}{10}[/tex]  

       [tex]a = 4 \frac {m}{s}^{2}[/tex]

Similarly,

   [tex]T_{3} = 15s[/tex] (5 seconds later) and   [tex]V_{1} = 0[/tex] ,  [tex]T_{1} = 0[/tex]

[tex]V_{3} - V_{1} = a\times (T_{3} -T_{1})[/tex]            

Then  [tex]V_{3}-0= 4\times (15-0)[/tex]

          [tex]V_{3} = 4\times (15)[/tex]                        

          [tex]V_{3} = 60\frac {m}{s}[/tex]