Respuesta :

Answer:

Part 9) [tex]x=5[/tex]  

Part 10) [tex]x=-9[/tex]  

Step-by-step explanation:

we know that

The Midpoint Theorem states that: The segment joining two sides of a triangle at the midpoints of those sides is parallel to the third side and is half the length of the third side

Part 9) we know that

Point Q is the midpoint segment XY (QY=QX)

Point R is the midpoint segment XW (RW=RX)

Applying the Midpoint Theorem

RQ is parallel to WY

and

[tex]RQ=\frac{1}{2}WY[/tex]  

we have

[tex]RQ=2x-3\\WY=x+9[/tex]

substitute

[tex]2x-3=\frac{1}{2}(x+9)[/tex]  

solve for x                  

[tex]4x-6=(x+9)[/tex]          

[tex]4x-x=9+6[/tex]

[tex]3x=15[/tex]  

[tex]x=5[/tex]  

Part 10) we know that

Point B is the midpoint segment TS (BS=BT)

Point C is the midpoint segment RS (CS=CR)

Applying the Midpoint Theorem

BC is parallel to TR

and

[tex]BC=\frac{1}{2}TR[/tex]  

we have

[tex]BC=x+19\\TR=x+29[/tex]

substitute

[tex]x+19=\frac{1}{2}(x+29)[/tex]  

solve for x

[tex]2x+38=(x+29)[/tex]  

[tex]2x-x=29-38[/tex]          

[tex]x=-9[/tex]