Respuesta :

Answer:

The point of intersection of the lines is  [tex](2,6)[/tex].

Thus, Ariyonne's claim is incorrect.

Step-by-step explanation:

Given equations:

1) [tex]y=4x-2[/tex]

2) [tex]y=\frac{1}{2}x+5[/tex]

To find the point of intersection, we need to solve the given system of equations.

In order to solve the system we will use substitution method.

We will substitute value of [tex]y[/tex] from first equation in the second equation and solve for [tex]x[/tex]

So, we have

[tex]4x-2=\frac{1}{2}x+5[/tex]

Multiplying both sides by 2 to remove fraction.

[tex]2\times(4x-2)=2\times(\frac{1}{2}x+5)[/tex]

Using distribution.

[tex]8x-4=x+10[/tex]

Subtracting both sides by [tex]x[/tex]

[tex]8x-4-x=x+10-x[/tex]

[tex]7x-4=10[/tex]

Adding 4 to both sides.

[tex]7x-4+4=10+4[/tex]

[tex]7x=14[/tex]

Dividing both sides by 7.

[tex]\frac{7x}{7}=\frac{14}{7}[/tex]

[tex]x=2[/tex]

We can find value of [tex]y[/tex] by plugging in [tex]x=2[/tex] in the first equation.

[tex]y=4(2)-2[/tex]

[tex]y=8-2[/tex]

[tex]y=6[/tex]

So, the point of intersection of the lines is  [tex](2,6)[/tex].

Thus, Ariyonne's claim is incorrect.