The height of a triangle is 5 m less than its base. The area of the triangle is 42 mº
What is the length of the base?
Enter your answer in the box

Respuesta :

Answer:

Length of base of triangle = 12 meters

Step-by-step explanation:

Let the base of the triangle be = [tex]x[/tex] meters

The height of triangle is 5 less than its base.

So, height of the triangle is given by = [tex]x-5[/tex]

Area of triangle = [tex]\frac{1}{2} \times base\times height[/tex]

⇒ [tex](\frac{1}{2} \times x\times (x-5))\ m^2[/tex]

⇒ [tex]\frac{x^2-5x}{2}\ m^2[/tex]     [Using distribution.]

Area of triangle given = [tex]42\ m^2[/tex]

Thus we have:

[tex]\frac{x^2-5x}{2}=42[/tex]

Multiplying both sides by 2 to remove fraction.

[tex]2\times\frac{x^2-5x}{2}=42\times 2[/tex]

[tex]x^2-5x=84[/tex]

Subtracting both sides by 84.

[tex]x^2-5x-84=84-84[/tex]

[tex]x^2-5x-84=0[/tex]

We can now solve quadratic using formula.

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Plugging in values from the quadratic equation to solve for [tex]x[/tex]

[tex]x=\frac{-(-5)\pm\sqrt{(-5)^2-4(1)(-84)}}{2(1)}[/tex]

[tex]x=\frac{5\pm\sqrt{25+336}}{2}[/tex]

[tex]x=\frac{5\pm\sqrt{361}}{2}[/tex]

[tex]x=\frac{5\pm19}{2}[/tex]

So,

[tex]x=\frac{5+19}{2}[/tex]   and [tex]x=\frac{5-19}{2}[/tex]

[tex]x=\frac{24}{2}[/tex]  and [tex]x=\frac{-14}{2}[/tex]

[tex]x=12[/tex]  and [tex]x=-7[/tex]

Since length cannot be negative, we take [tex]x=12[/tex] meters as length of base of triangle. (Answer)