Respuesta :

Answer:

[tex]y =  (\frac{8}{-3})(x) - 16[/tex]

Step-by-step explanation:

The given points are (-6,5) and (-3,-3)

The equation of the line is of the form,

[tex](y-y1) = m(x-x1)[/tex] , m is the slope of line and (x1,y1) is one of the end points.

The slope m of the line is calculated as,

[tex]\frac{(y2)-(y1)}{(x2)-(x1)} = \frac{(5)-(-3)}{(-6)-(-3)} = \frac{8}{-3}[/tex]

Thus the line equation is,

[tex](y-5) =  (\frac{8}{-3})(x-(-6))[/tex]

[tex]y =  (\frac{8}{-3})(x-(-6)) + 5[/tex]

[tex]y =  (\frac{8}{-3})(x) - 16[/tex]