Respuesta :

Answer:

[tex]\frac{3x^2+7x-20}{x+4}=3x-5[/tex]

Step-by-step explanation:

Long division:

Step 1:

We divide '3x²' by 'x' to get the first term of quotient.

⇒ [tex]\frac{3x^2}{x}=3x[/tex]

Now, we multiply '3x' to [tex](x+4)[/tex]

⇒ [tex]3x(x+4)=3x^2+12x[/tex]

Now, we subtract [tex]3x^2+12x[/tex] from the given numerator [tex]3x^2+7x-20[/tex]. This gives,

[tex]=3x^2+7x-20-(3x^2+12x)\\=3x^2+7x-20-3x^2-12x\\=3x^2-3x^2+7x-12x-20\\=-5x-20[/tex]

Step 2:

We divide the first term of the above result by 'x' again to get the second term of the quotient.

⇒ [tex]\frac{-5x}{x}=-5[/tex]

Now, we multiply '-5' to [tex](x+4)[/tex]

⇒ [tex]-5(x+4)=-5x-20[/tex]

Now, we subtract [tex]-5x-20[/tex] from the result obtained at the last of step 1 [tex]-5x-20[/tex]. This gives,

[tex]-5x-20-(-5x-20)=-5x+5x-20+20=0[/tex]

So, we stop division as we got a constant after subtraction. The constant is called the remainder and here the remainder is 0.

The quotient is our answer: [tex]3x-5[/tex]

Ver imagen DarcySea