Respuesta :

Answer:   ((3 ln 3 +  3 ln x) +  0.5 (ln (y^{2}-1) −

    { (2 (ln y) [ ln (x-1) ]  ;  

_________________________________________

Step-by-step explanation:

Given problem:  Expand the following logarithm completely:

→   [tex]ln [\frac{27x^{3}\sqrt{y^{2}-1 }  }{y(x-1)^{2} } }[/tex]] ;

_________________________________________

To begin:  Simplify:

    →     [tex][\frac{27x^{3}\sqrt{y^{2}-1 }  }{y(x-1)^{2} } }[/tex]]  ;

_________________________________________

First, within the "numerator" ,  rewrite:  " √(y² - 1) " ;  as:

         "  [tex](y^{2} - 1)^{\frac{1}{2} }[/tex] " ;

→  Note the following property of exponents:

            [tex]\sqrt{a} = a^{\frac{1}{2} }[/tex] ; [tex]{ a\geq 0}.[/tex]

_________________________________________

Then rewrite the expression as:

     [tex]ln [\frac{27x^{3}(y^{2}-1)^{\frac{1}{2} } }{y(x-1)^{2} } ][/tex]

Note the "quotient rule" property of the "natural logarithm (ln)" ;

          ln (a/b)  = ln a − ln b ;

So; we have:

      [tex]ln [\frac{27x^{3}(y^{2}-1)^{\frac{1}{2} } }{y(x-1)^{2} } ][/tex];

 ↔  

[tex]ln [\frac{27x^{3}(y^{2}-1)^{\frac{1}{2} } } [\frac{27x^{3}(y^{2}-1)^{\frac{1}{2} } } ;

=  ln  [tex][\frac{27x^{3}(y^{2}-1)^{\frac{1}{2} } }[/tex]  -

    ln [tex][\frac{27x^{3}(y^{2}-1)^{\frac{1}{2} } }[/tex] ;

_______________________________________________

    ln a = ln  [tex][{27x^{3}(y^{2}-1)^{\frac{1}{2} } }[/tex]  ;

    ln b = ln [tex](y^{2}-1)^{\frac{1}{2} } }[/tex] ;

Simplify:  ln a ln b  ;

_______________________________________________

First, simplify:  ln a ;  

     ln a = ln  [tex]{27x^{3}(y^{2}-1)^{\frac{1}{2} } }[/tex]  ;

→  Note the "product rule" for the "natural logarithm" {" ln " }:

  →    ln(a * b) = ln(a) + ln(b) ;

  →    ln ( [tex]{27x^{3}[/tex]  * [tex](y^{2}-1)^{\frac{1}{2} } }[/tex] ) ;

             in which:

                a = [tex]{27x^{3}[/tex] ;

                b = [tex](y^{2}-1)^{\frac{1}{2} } }[/tex] ;

→  ln (a * b) =

    (ln a  +  ln b ) =

      =  [ ln ([tex]{27x^{3}[/tex])] + [ ln [ [tex](y^{2}-1)^{\frac{1}{2} } }[/tex] = ? ;

First, simplify:  "ln a " ;

→ ln a = ln [tex]{27x^{3}[/tex] = ? ;

→  Note the "product rule" for the "natural logarithm" {" ln " }:

  →    ln(a * b) = ln(a) + ln(b) ;

  →    ln {27 *x^{3}) = ln 27 + ln x³  ;  in which:  a = 27 ; b = x³  ;

  →    ln(a * b) = ln(a) + ln(b) = ln 27 + ln (x³)  = ?  ;

Note:   We have "x³ " ;  Note the number:  "27" ;  the ∛27 = 3 ; a whole number integer; so rewrite "ln 27" as:  "ln (3³)"

  →    ln(a * b) = ln(a) + ln(b) = ln 27 + ln (x³) = ln (3³) + ln (x³) ;

                                                                     =  3 ln 3 + 3 ln x .  

So;  "ln a " from above:  →  ln(a * b) =  (ln a + ln b) ;

      =  [ ln ([tex]{27x^{3}[/tex])] + [ ln [ [tex](y^{2}-1)^{\frac{1}{2} } }[/tex]  = ? ;

Rewrite:  (3 ln 3 +  3 ln x) + [ln [ [tex](y^{2}-1)^{\frac{1}{2} } }[/tex] = ? ;

Now, find simplify the following "ln b" from above:

→ ln b = ln  [[tex](y^{2}-1)^{\frac{1}{2} } }[/tex] = (0.5) ln (y² -1) ;

Rewrite:  →    ln(a * b) = ln(a) + ln(b) = ln 27 + ln (x³) ;

      = (3 ln 3 +  3 ln x) + [ln [ [tex](y^{2}-1)^{\frac{1}{2} } }[/tex] =

      = (3 ln 3 +  3 ln x) +  0.5 (ln [[tex](y^{2}-1)[/tex]) ;

_____________________________________

So, this is the value for the "ln" of the "numerator" of the given problem:

" (3 ln 3 +  3 ln x) +  0.5 (ln [[tex](y^{2}-1)[/tex]) " .

_____________________________________

Now, let's find the value for the "ln" of the "denominator" of the given problem:

_____________________________________

  →  " ln y(x -1)²  " ;

  =  ln [tex]y[/tex]*[tex](x-1)^{2} } ][/tex] ;

→ Use the product rule:  ln(a * b) = ln a + ln b ;  a = "y" ;   b = " (x-1)² " .

→   ln ([tex]y[/tex]*[tex](x-1)^{2} } ][/tex])  = (ln y) * (ln (x-1)²) ;

Note:  ln (x-1)² = 2 ln (x-1) ;

→ (ln y) * [ ln (x-1)² ] =  (ln y ) * 2 ln (x-1) = 2 (ln y) [ ln (x-1) ] .

_____________________________________

So, going back to our original given problem:

_____________________________________

→   [tex]ln [\frac{27x^{3}(y^{2}-1)^{\frac{1}{2} } }{y(x-1)^{2} } ][/tex] ;

   

→  Use the "quotient rule" property of the "natural logarithm (ln)" ;

          ln (a/b)  = ln a − ln b  ;

Note:  " ln a "  = "  (3 ln 3 +  3 ln x) +  0.5 (ln [[tex](y^{2}-1)[/tex])

           "ln b " =  " (2 (ln y) [ ln (x-1) ]

___________________________________________

   (ln a) - (ln b) =

          ((3 ln 3 +  3 ln x) +  0.5 (ln (y^{2}-1) −

    { (2 (ln y) [ ln (x-1) ]  ;

___________________________________________