Answer:
The solutions are
[tex]x=-4+2\sqrt{6}[/tex]
[tex]x=-4-2\sqrt{6}[/tex]
Step-by-step explanation:
we know that
The formula to solve a quadratic equation of the form
[tex]ax^{2} +bx+c=0[/tex]
is equal to
[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]x^{2} +8x-8=0[/tex]
so
[tex]a=1\\b=8\\c=-8[/tex]
substitute in the formula
[tex]x=\frac{-8(+/-)\sqrt{8^{2}-4(1)(-8)}} {2(1)}[/tex]
[tex]x=\frac{-8(+/-)\sqrt{96}} {2}[/tex]
[tex]x=\frac{-8(+/-)4\sqrt{6}} {2}[/tex]
[tex]x=-4(+/-)2\sqrt{6}[/tex]