Respuesta :

Answer:

b. [tex]-25\sqrt{2}[/tex]

Step-by-step explanation:

Given:

The expression to simplify is given as:

[tex]-3\sqrt{162}+2\sqrt{200}-9\sqrt{8}[/tex]

Let us simplify each term and then add them together.

[tex]-3\sqrt{162}=-3\sqrt{81\times2}=-3\times 9\sqrt{2}=-27\sqrt{2}[/tex]

[tex]2\sqrt{200}=2\sqrt{100\times 2}=2\times 10\sqrt{2}=20\sqrt{2}[/tex]

[tex]-9\sqrt{8}=-9\sqrt{4\times2}=-9\times 2\sqrt{2}=-18\sqrt{2}[/tex]

Now, add all the results obtained above. This gives,

[tex]-27\sqrt{2}+20\sqrt{2}-18\sqrt{2}[/tex]

Taking [tex]\sqrt2[/tex] out as it is a common factor, we get

[tex]=\sqrt{2}(-27+20-18)\\=\sqrt2(-25)\\=-25\sqrt{2}[/tex]

Therefore, the correct option is b.