What is the pH of a sodium formate solution prepared by adding 0.680 grams of sodium formate to 100.0 ml of water at 25.0°C? The Ka at 25.0 °C for formic acid is 1.8 x 10-4. Enter your answer with two decimal places.

Respuesta :

Answer : The pH of the solution is, 8.38

Solution :  Given,

Concentration (c) = 0.11 M

Acid dissociation constant = [tex]k_a=1.8\times 10^{-4}[/tex]

First we have to calculate the moles of sodium formate.

[tex]Moles=\frac{Mass}{\text{Molar mass}}=\frac{0.680g}{68g/mole}=0.010mol[/tex]

Now we have to calculate the concentration of formic acid.

Concentration of formic acid = Concentration of sodium formate = [tex]\frac{Moles}{Volume}=\frac{0.010mol}{0.100L}=0.1M[/tex]

Now we have to calculate the base dissociation constant.

[tex]k_w=k_a\times k_b\\\\k_b=\frac{k_w}{k_a}\\\\k_b=\frac{1\times 10^{-14}}{1.8\times 10^{-4}}\\\\k_b=5.6\times 10^{-11}[/tex]

The equilibrium reaction for dissociation of (weak base) is,

                             [tex]HCOO^-+H_2O\rightleftharpoons HCOOH+OH^-[/tex]

initially conc.         0.1                             0             0

At eqm.              (0.1-x)                            x             x  

First we have to calculate the value of 'x'.

Formula used :

[tex]k_b=\frac{[HCOOH][OH^-]}{[HCOO^-]}[/tex]

Now put all the given values in this formula ,we get:

[tex]5.6\times 10^{-11}=\frac{(x)(x)}{(0.1-x)}[/tex]

By solving the terms, we get

[tex]x=2.4\times 10^{-6}M[/tex]

Thus, the concentration of hydroxide ion is:

[tex][OH^-]=x=2.4\times 10^{-6}M[/tex]

Now we have to calculate the pOH.

[tex]pOH=-\log [OH^-][/tex]

[tex]pOH=-\log (2.4\times 10^{-6})[/tex]

[tex]pOH=5.62[/tex]

Now we have to calculate the pH.

[tex]pH+pOH=14\\\\pH=14-pOH\\\\pH=14-5.62\\\\pH=8.38[/tex]

Therefore, the pH of the solution is, 8.38