Answer:
3.61581 Nm²/C
Explanation:
[tex]\epsilon_0[/tex] = Permittivity of free space = [tex]8.85\times 10^{-12}\ F/m[/tex]
[tex]\rho[/tex] = Charge density = 500 nC/m³
v = Volume = [tex]0.04^3\ m^3[/tex]
From Gauss' Law we have
[tex]\phi=\dfrac{Q}{\epsilon}\\\Rightarrow \phi=\dfrac{\rho v}{\epsilon}\\\Rightarrow \phi=\dfrac{500\times 10^{-9}\times 0.04^3}{8.85\times 10^{-12}}\\\Rightarrow \phi=3.61581\ Nm^2/C[/tex]
The electric flux through this surface is 3.61581 Nm²/C