Option B: [tex]\frac{11x-9}{x^2-1}[/tex] is the correct answer
Step-by-step explanation:
Given
[tex]\frac{5}{x+1} + \frac{6}{x-1} -\frac{10}{x^2-1}[/tex]
Simplifying x^2-1
[tex]x^2-1 = (x+1)(x-1)[/tex]
So,
[tex]\frac{5}{x+1} + \frac{6}{x-1} -\frac{10}{(x+1)(x-1)}\\=\frac{5(x-1)+6(x+1)-10}{(x+1)(x-1)}\\=\frac{5x-5+6x+6-10}{(x+1)(x-1)}\\=\frac{5x+6x-5+6-10}{(x+1)(x-1)}\\=\frac{11x-9}{(x+1)(x-1)}\\=\frac{11x-9}{x^2-1}[/tex]
Hence,
Option B: [tex]\frac{11x-9}{x^2-1}[/tex] is the correct answer
Keywords: Fractions, polynomials
Learn more about polynomials at:
#LearnwithBrainly