An inductor is connected to the terminals of a battery that has an emf of 12.0V and negligible internal resistance. The current is 4.86mA at 0.940ms after the connection is completed. After a long time the current is 6.45mA

Part A) What is the resistance R of the inductor?

R=?

Part B) What is the inductance L of the inductor?

L=?

Respuesta :

Answer:

PartA) resistance R=1.86Ω

PartB) inductnce L=1.26mH

Explanation:

In an RL circuit, [tex]i(t)=\frac{E}{R}(1-e^{\frac{-t}{\frac{L}{R}}})[/tex]

where E is the emf of battery

           L is inductance of inductor

           R is the internal resistance of inductor

given [tex]i(\infty)=[/tex][tex]i[/tex]max=[tex]\frac{E}{R}[/tex]

⇒[tex]6.45=\frac{E}{R}[/tex]

⇒[tex]6.45=\frac{12}{R}[/tex]

[tex]R=\frac{6.45}{12}=1.86[/tex]Ω

given [tex]i(0.94ms)=4.86[/tex]

⇒[tex]4.86=6.45(1-e^{\frac{-0.94*10^{-3}}{\frac{L}{R}}})[/tex]

⇒[tex]0.75=1-e^{\frac{-0.94*10^{-3}}{\frac{L}{R}}}[/tex]

⇒[tex]0.25=e^{\frac{-0.94*10^{-3}}{\frac{L}{R}}}[/tex]

applying logarithm on both sides,

⇒[tex]log(0.25)=\frac{-0.94*10^{-3}}{\frac{L}{R}}[/tex]

⇒[tex]log(4)=\frac{0.94*10^{-3}}{\frac{L}{1.86}}[/tex]

⇒[tex]L=\frac{0.94*10^{-3}*1.86}{log4}=1.26mH[/tex]