Answer:
1200 kg/m³
Explanation:
V = Volume
[tex]\rho[/tex] = Density
o denotes object
f denotes fluid
[tex]V_f=\dfrac{2}{3}V_o[/tex]
The buoyant force balances the weight of the object
[tex]W_o=W_f\\\Rightarrow \rho_oV_og=\rho_fV_fg\\\Rightarrow \dfrac{\rho_o}{\rho_f}=\dfrac{V_f}{V_o}\\\Rightarrow \dfrac{\rho_o}{\rho_f}=\dfrac{\dfrac{2}{3}V_0}{V_0}\\\Rightarrow \dfrac{\rho_o}{\rho_f}=\dfrac{2}{3}\\\Rightarrow \rho_f=\dfrac{3}{2}\rho_o\\\Rightarrow \rho_f=\dfrac{3}{2}\times 800\\\Rightarrow \rho_f=1200\ kg/m^3[/tex]
The density of the fluid is 1200 kg/m³