Respuesta :

Answer:

-48π

Step-by-step explanation:

Recall that Green's theorem states the following:

Let P, Q be [tex]\bf C^1[/tex]-functions on a region A, which is the interior of a closed piecewise [tex]\bf C^1[/tex]-path C, parametrized counterclockwise. Then  

[tex]\bf \displaystyle\oint_CPdx+Qdy=\displaystyle\iint_A(\displaystyle\frac{\partial Q}{\partial x}-\displaystyle\frac{\partial P}{\partial y})dydx[/tex]

We have

[tex]\bf P(x, y) = 2y^3\\\\Q(x,y)=-2x^3[/tex]

[tex]\bf \displaystyle\frac{\partial Q}{\partial x}=-6x^2\\\\\displaystyle\frac{\partial P}{\partial y}=6y^2[/tex]

Therefore

[tex]\bf \oint_C2y^3dx-2x^3Qdy=\displaystyle\iint_A(-6x^2-6y^2)dydx[/tex]

where A is the interior of the circle of radius 2 centered at the origin.

If we change to polar coordinates

x = rcos(t)

y = rsin(t)

Then A can be described with the inequalities

0 < r < 2

0 < t < 2π  

and

[tex]\bf \displaystyle\iint_A(-6x^2-6y^2)dydx=-6\displaystyle\int_{0}^{2\pi}\displaystyle\int_{0}^{2} (r^2cos^2t+r^2sin^2t)rdrdt=\\\\-6\displaystyle\int_{0}^{2\pi}\displaystyle\int_{0}^{2} (r^2)rdrdt=-6\left(\displaystyle\int_{0}^{2\pi}dt\displaystyle\int_{0}^{2}r^3dr  \right)=\\\\=\boxed{-48\pi}[/tex]

The result of the integral [tex]\int\limits^a_b {2y^3\ dx - 2x^3\ dy}[/tex] using the green theorem is [tex]-48\pi[/tex]

The integral is given as:

[tex]\int\limits^a_b {2y^3\ dx - 2x^3\ dy}[/tex]

By Green Theorem, we have:

[tex]\int\limits^a_b {Pdx + Qdy} = \int\int_A(\frac{dQ}{dx} - \frac{dP}{dy}) dy dx[/tex]

By comparison, we have:

[tex]P(x,y) = 2y^3[/tex]

[tex]Q(x,y) = -2x^3[/tex]

Differentiate both equations

[tex]\frac{dP}{dy} =6y^2[/tex]

[tex]\frac{dQ}{dx} = -6x^2[/tex]

So, the integral becomes:

[tex]\int\limits^a_b {2y^3dx - 2x^3dy} = \int\int_A(-6x^2 - 6y^2) dy dx[/tex]

Factor out -6

[tex]\int\limits^a_b {2y^3dx - 2x^3dy} = -6\int\int_A(x^2 +y^2) dy dx[/tex]

Express as polar coordinates

[tex]\int\limits^a_b {2y^3dx - 2x^3dy} = -6\int\limits^{2\pi}_0\int\limits^2_0 r^2 \ r dr d\theta[/tex]

This gives

[tex]\int\limits^a_b {2y^3dx - 2x^3dy} = -6\int\limits^{2\pi}_0\int\limits^2_0 r^3 dr d\theta[/tex]

Integrate

[tex]\int\limits^a_b {2y^3dx - 2x^3dy} = -6\int\limits^{2\pi}_0 \frac{r^4}{4}|\limits^2_0 d\theta[/tex]

Expand

[tex]\int\limits^a_b {2y^3dx - 2x^3dy} = -6\int\limits^{2\pi}_0 \frac{2^4}{4}d\theta[/tex]

[tex]\int\limits^a_b {2y^3dx - 2x^3dy} = -6\int\limits^{2\pi}_0 4d\theta[/tex]

Factor out 4

[tex]\int\limits^a_b {2y^3dx - 2x^3dy} = -24\int\limits^{2\pi}_0 d\theta[/tex]

Integrate

[tex]\int\limits^a_b {2y^3dx - 2x^3dy} = -24 [\theta]|\limits^{2\pi}_0[/tex]

Expand

[tex]\int\limits^a_b {2y^3dx - 2x^3dy} = -24 [2\pi - 0][/tex]

This gives

[tex]\int\limits^a_b {2y^3dx - 2x^3dy} = -24 [2\pi][/tex]

Expand

[tex]\int\limits^a_b {2y^3dx - 2x^3dy} = -48\pi[/tex]

Hence, the result of the integral is [tex]-48\pi[/tex]

Read more about integrals at:

https://brainly.com/question/18651211