Dinitrogen tetraoxide, N2O4, decomposes to nitrogen dioxide, NO2, in a first-order process. If k = 1.5 x 103 s-1 at 5 ºC and k = 4.0 x 103 s-1 at 25 ºC, what is the activation energy for the decomposition?

Respuesta :

Answer:

The activation energy for the decomposition = 33813.28 J/mol

Explanation:

Using the expression,

[tex]\ln \dfrac{k_{1}}{k_{2}} =-\dfrac{E_{a}}{R} \left (\dfrac{1}{T_1}-\dfrac{1}{T_2} \right )[/tex]

Wherem  

[tex]k_1\ is\ the\ rate\ constant\ at\ T_1[/tex]

[tex]k_2\ is\ the\ rate\ constant\ at\ T_2[/tex]

[tex]E_a[/tex] is the activation energy

R is Gas constant having value = 8.314 J / K mol  

Thus, given that, [tex]E_a[/tex] = ?

[tex]k_2=4.0\times 10^3s^{-1}[/tex]

[tex]k_1=1.5\times 10^3s^{-1}[/tex]  

[tex]T_1=5\ ^0C[/tex]  

[tex]T_2=25\ ^0C[/tex]  

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T = (5 + 273.15) K = 278.15 K  

T = (25 + 273.15) K = 298.15 K  

[tex]T_1=278.15\ K[/tex]

[tex]T_2=298.15\ K[/tex]

So,

[tex]\ln \frac{1.5\times 10^3}{4.0\times 10^3}\:=-\frac{E_{a}}{8.314}\times \left(\frac{1}{278.15}-\frac{1}{298.15}\right)[/tex]

[tex]E_a=-\ln \frac{1.5\times \:10^3}{4.0\times \:10^3}\:\times \frac{8.314}{\left(\frac{1}{278.15}-\frac{1}{298.15}\right)}[/tex]

[tex]E_a=-\frac{8.314\ln \left(\frac{1.5\times \:10^3}{4\times \:10^3}\right)}{\frac{1}{278.15}-\frac{1}{298.15}}[/tex]

[tex]E_a=-\frac{689483.53266 \ln \left(\frac{1.5}{4}\right)}{20}[/tex]

[tex]E_a=33813.28\ J/mol[/tex]

The activation energy for the decomposition = 33813.28 J/mol