Compute the differential of surface area for the surface S described by the given parametrization.
r(u, v) = e^u cos(v), e^u sin(v), uv , D = {(u, v) | 0 <_ u <_ 4, 0 <_ v <_ 2π}

Respuesta :

With [tex]S[/tex] parameterized by

[tex]\vec r(u,v)=\langle e^u\cos v,e^u\sin v,uv\rangle[/tex]

the surface element [tex]\mathrm dS[/tex] is

[tex]\mathrm dS=\left\|\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}\right\|\,\mathrm du\,\mathrm dv[/tex]

We have

[tex]\dfrac{\partial\vec r}{\partial u}=\langle e^u\cos v,e^u\sin v,v\rangle[/tex]

[tex]\dfrac{\partial\vec r}{\partial v}=\langle -e^u\sin v,e^u\cos v,u\rangle[/tex]

with cross product

[tex]\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}=\langle ue^u\sin v-ve^u\cos v,-ve^u\sin v-ue^u\cos v,e^{2u}\cos^2v+e^{2u}\sin^2v\rangle[/tex]

[tex]\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}=\langle e^u(u\sin v-v\cos v),-e^u(v\sin v+u\cos v),e^{2u}\rangle[/tex]

with magnitude

[tex]\left\|\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}\right\|=\sqrt{e^{2u}(u\sin v-v\cos v)^2+e^{2u}(v\sin v+u\cos v)^2+e^{4u}}[/tex]

[tex]\left\|\dfrac{\partial\vec r}{\partial u}\times\dfrac{\partial\vec r}{\partial v}\right\|=e^u\sqrt{u^2+v^2+e^{2u}}[/tex]

So we have

[tex]\mathrm dS=\boxed{e^u\sqrt{u^2+v^2+e^{2u}}\,\mathrm du\,\mathrm dv}[/tex]