With the parameterization
[tex]\vec g(\theta,\varphi)=\langle3\sin\varphi,\cos\theta,3\sin\varphi,\sin\theta,3\cos\varphi\rangle[/tex]
take the normal vector to [tex]K[/tex] to be
[tex]\dfrac{\partial\vec g}{\partial\varphi}\times\dfrac{\partial\vec g}{\partial\theta}=\langle9\cos\theta\sin^2\varphi,9\sin\theta\sin^2\varphi,9\cos\varphi\sin\varphi\rangle[/tex]
which has magnitude
[tex]\left\|\dfrac{\partial\vec g}{\partial\varphi}\times\dfrac{\partial\vec g}{\partial\theta}\right\|=\sqrt{(9\cos\theta\sin^2\varphi)^2+(9\sin\theta\sin^2\varphi)^2+(9\cos\varphi\sin\varphi)^2}=9\sin\varphi[/tex]
Then the integral is
[tex]\displaystyle\iint_Kz\,\mathrm dS=\int_0^{\pi/2}\int_0^{\pi/2}3\cos\varphi(9\sin\varphi)\,\mathrm d\theta\,\mathrm d\varphi[/tex]
[tex]=\displaystyle\frac{27\pi}4\int_0^{\pi/2}\sin(2\varphi)\,\mathrm d\varphi=\boxed{\frac{27\pi}4}[/tex]