Using the quadratic formula to solve 7x2 – x = 7, what are the values of x? StartFraction 1 plus-or-minus StartRoot 195 EndRoot i Over 14 EndFraction StartFraction 1 plus-or-minus StartRoot 197 EndRoot Over 14 EndFraction StartFraction 1 plus-or-minus StartRoot 195 EndRoot Over 14 EndFraction StartFraction 1 plus-or-minus StartRoot 197 EndRoot i Over 14 EndFraction

Respuesta :

Answer:

[tex]x=\frac{1(+/-)\sqrt{197}} {14}[/tex]

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]7x^{2} -x=7[/tex]  

equate to zero

[tex]7x^{2} -x-7=0[/tex]  

so

[tex]a=7\\b=-1\\c=-7[/tex]

substitute in the formula

[tex]x=\frac{-(-1)(+/-)\sqrt{-1^{2}-4(7)(-7)}} {2(7)}[/tex]

[tex]x=\frac{1(+/-)\sqrt{197}} {14}[/tex]

Answer:

B

Step-by-step explanation: