Calculate ΔG o for the following reaction at 25°C: 3Mg(s) + 2Al3+(aq) ⇌ 3Mg2+(aq) + 2Al(s) Enter your answer in scientific notation. × 10 kJ / mol

Respuesta :

Answer:

-3.7771 × 10² kJ/mol

Explanation:

Let's consider the following equation.

3 Mg(s) + 2 Al³⁺(aq) ⇌ 3 Mg²⁺(aq) + 2 Al(s)

We can calculate the standard Gibbs free energy (ΔG°) using the following expression.

ΔG° = ∑np . ΔG°f(p) - ∑nr . ΔG°f(r)

where,

n: moles

ΔG°f(): standard Gibbs free energy of formation

p: products

r: reactants

ΔG° = 3 mol × ΔG°f(Mg²⁺(aq)) + 2 mol × ΔG°f(Al(s)) - 3 mol × ΔG°f(Mg(s)) - 2 mol × ΔG°f(Al³⁺(aq))

ΔG° = 3 mol × (-456.35 kJ/mol) + 2 mol × 0 kJ/mol - 3 mol × 0 kJ/mol - 2 mol × (-495.67 kJ/mol)

ΔG° = -377.71 kJ = -3.7771 × 10² kJ

This is the standard Gibbs free energy per mole of reaction.

The Gibbs free energy for the reaction will be -3.7771 [tex]\rm \times\;10^2[/tex] kJ/mol.

[tex]\rm \Delta[/tex]G is the Gibbs free energy that can be used to calculate the reversible work.

Gibbs free energy for a reaction :

[tex]\rm \Delta G\;=\;n\;\Delta G_P\;-\;n\;\Delta G_R[/tex]

[tex]\rm \Delta G_P[/tex] = Gibbs free energy of Product

[tex]\rm \Delta G_R[/tex] = Gibbs free energy of Reactant

[tex]\Delta[/tex]G = n[tex]\rm \Delta G_M_g^2^+[/tex] + n[tex]\rm \Delta G_A_l[/tex] - n[tex]\rm \Delta G_M_g[/tex] + n[tex]\rm \Delta G_A_l^3^+[/tex]

[tex]\Delta[/tex]G = 3 [tex]\times[/tex] -456.35 kJ/mol + 2 [tex]\times[/tex] 0 - 3 [tex]\times[/tex] 0 + 2 [tex]\times[/tex] -495.67 kJ/mol

[tex]\Delta[/tex]G = -377.71 kJ/mol

[tex]\Delta[/tex]G = -3.7771 [tex]\times\;10^2[/tex] kJ/mol

The Gibbs free energy for the reaction will be -3.7771 [tex]\rm \times\;10^2[/tex] kJ/mol.

For more information about [tex]\Delta[/tex]G, refer the link:

https://brainly.com/question/20358734?referrer=searchResults