Find the perimeter of a triangle with vertices A(3, 1), B(2, -1), and C(-3, 2). Leave
your answer in decimal form, rounded to the nearest hundredth.

Respuesta :

The perimeter of triangle is: 14.15 units

Step-by-step explanation:

First of all we have to find the lengths of sides of triangles

Given

A(3, 1), B(2, -1), and C(-3, 2)

The distance formula will be used to find the lengths of sides

[tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\[/tex]

So,

[tex]AB = \sqrt{(2-3)^2+(-1-1)^2}\\=\sqrt{(-1)^2+(2)^2}\\=\sqrt{1+4}\\=\sqrt{5}\\=2.24\ unitsBC = \sqrt{(-3-2)^2+(2+1)^2}\\=\sqrt{(-5)^2+(3)^2}\\=\sqrt{25+9}\\=\sqrt{34}\\= 5.83\ units\\AC = \sqrt{(-3-3)^2+(2-1)^2}\\=\sqrt{(-6)^2+(1)^2}\\=\sqrt{36+1}\\=\sqrt{37}\\=6.08\ units[/tex]

The perimeter of triangle will be:

[tex]P = AB+BC+AC\\= 2.24+5.83+6.08\\=14.15\ units[/tex]

Hence,

The perimeter of triangle is: 14.15 units

Keywords: Triangle Perimeter

Learn more about perimeter at:

  • brainly.com/question/573729
  • brainly.com/question/572693

#LearnwithBrainly