Respuesta :

Answer:

Part 1) [tex]m \angle G=121^o[/tex]

Part 2) [tex]m \angle BAD=110^o[/tex]

Step-by-step explanation:

Part 1) What is m∠G ?

we know that

The sum of the interior angles in a triangle must be equal to 180 degrees

In the triangle FGH

[tex]m \angle F+m \angle G+m \angle H=180^o[/tex]

substitute the given values

[tex](x-5)^o+(3x+25)^o+x^o=180^o[/tex]

solve for x

[tex]5x+20=180[/tex]

[tex]5x=160[/tex]

[tex]x=32^o[/tex]

Find the measure of angle G    

[tex]m \angle G=(3x+25)^o[/tex]

substitute the value of x

[tex]m \angle G=(3(32)+25)=121^o[/tex]

Part 2) What is m∠BAD?

we know that

The Exterior Angle Theorem states that: The exterior angle of a triangle is equal to the sum of the two opposite interior angles.

so

[tex]m \angle BAD=85^o+25^o[/tex]

[tex]m \angle BAD=110^o[/tex]