Answer:
The perimeter of the sectors is greater than 47.5 cm
Step-by-step explanation:
step 1
Find the circumference of the complete circle
The circumference of the circle is equal to
[tex]C=2\pi r[/tex]
we have
[tex]r=11\ cm[/tex]
substitute
[tex]C=2\pi (11)[/tex]
[tex]C=22\pi\ cm[/tex]
step 2
Find the length of the arc of the sector
we know that
The circumference subtends a central angle of 360 degrees
so
using proportion
Find out the length of the arc by a central angle of 135 degrees
[tex]\frac{22\pi }{360^o}=\frac{x}{135^o} \\\\x=22\pi (135)/360\\\\x=8.25\pi \ cm[/tex]
step 3
Find the perimeter of the sectors
The perimeter is equal to
[tex]P=2r+8.25\pi[/tex]
substitute
[tex]P=2(11)+8.25\pi[/tex]
[tex]P=(22+8.25\pi)\ cm[/tex]
assume
[tex]\pi =3.14[/tex]
[tex]P=(22+8.25(3.14))=47.9\ cm[/tex]
therefore
The perimeter of the sectors is greater than 47.5 cm