Answer:
[tex]g(x)=f(x)+2[/tex]
[tex]f(x)[/tex] is shifted 2 units upwards to become [tex]g(x)[/tex]
Step-by-step explanation:
Given functions:
[tex]f(x)=4x[/tex]
[tex]g(x)=4x+2[/tex]
On comparing the functions we find out that:
[tex]g(x)=f(x)+2[/tex]
The translation rule for this is given as:
[tex]f(x)\rightarrow f(x)+c[/tex]
If [tex]c>0[/tex] the function shifts [tex]c[/tex] units to the up.
If [tex]c<0[/tex] the function shifts [tex]c[/tex] units to the down.
Thus we can see the unit shift from [tex]f(x)[/tex] to [tex]g(x)[/tex] is 2 units upwards as 2 is being added to function [tex]f(x)[/tex]