LetT: P2 → P4be the linear transformationT(p) = 4x2p.Find the matrix A for T relative to the basesB = {1, x, x2}andB' = {1, x, x2, x3, x4}.

Respuesta :

Answer:  The required matrix A is

[tex]A=\left[\begin{array}{ccc}0&0&0\\0&0&0\\4&0&0\\0&4&0\\0&0&4\end{array}\right]_{5\times3} .[/tex]

Step-by-step explanation:  We are given the following linear transformation :

[tex]T:P^2\Rightarrow P^4,~~~~~~~~~~~~~T(p)=4x^2p.[/tex]

We are to find the matrix A relative to the bases [tex]B=\{1,x,x^2\}[/tex] and [tex]B^\prime=\{1,x,x^2,x^3,x^4\}.[/tex]

We have

[tex]T(1)=4x^2\times1=4x^2=0\times1+0\times x+4\times x^2+0\times x^3+0\times x^4,\\\\T(x)=4x^2\times x=4x^3=0\times1+0\times x+0\times x^2+4\times x^3+0\times x^4,\\\\T(x)=4x^2\times x^2=4x^4=0\times1+0\times x+0\times x^2+0\times x^3+4\times x^4.[/tex]

Therefore, the matrix A is of order 5 × 3, given by

[tex]A=\left[\begin{array}{ccc}0&0&0\\0&0&0\\4&0&0\\0&4&0\\0&0&4\end{array}\right]_{5\times3} .[/tex]

Thus, the required matrix A is

[tex]A=\left[\begin{array}{ccc}0&0&0\\0&0&0\\4&0&0\\0&4&0\\0&0&4\end{array}\right]_{5\times3} .[/tex]