Answer:
[tex]V_s=384.074V\\I_s=1.108A[/tex]
Explanation:
In an ideal transformer, due to the electromagnetic induction, the voltages in the windings are proportional to the variation of the magnetic flux that crosses them and the number of turns of the winding. it follows that the relationship between tensions is proportional to the relationship between the number of turns of the windings. In this way:
[tex]\frac{V_p}{V_s} =\frac{N_p}{N_s} =\frac{I_s}{I_p}[/tex]
Where:
[tex]N_p=Number\hspace{3}of\hspace{3}turns\hspace{3}on\hspace{3}primary\hspace{3}coil\\N_s=Number\hspace{3}of\hspace{3}turns\hspace{3}on\hspace{3}secondary\hspace{3}coil\\V_p=Voltage\hspace{3}on\hspace{3}primary\hspace{3}coil\\V_s=Voltage\hspace{3}on\hspace{3}secondary\hspace{3}coil\\I_p=Current\hspace{3}on\hspace{3}primary\hspace{3}coil\\I_s=Current\hspace{3}on\hspace{3}secondary\hspace{3}coil[/tex]
So:
[tex]V_s=\frac{V_p*N_s}{N_p}=\frac{122*340}{108} =384.074V[/tex]
[tex]I_s=\frac{I_p*N_p}{N_s}=\frac{4*108}{340} =1.108A[/tex]