Respuesta :
Answer:
The equation of the regression line is:
[tex]y~=~234.56158 ~-~ 2.95835 \cdot x[/tex]
Step-by-step explanation:
The Least Squares Regression Line is the line that makes the vertical distance from the data points to the regression line as small as possible. It’s called a “least squares” because the best line of fit is one that minimizes the variance.
We have the following data:
[tex]\begin{array}{c|ccccccccc}X&50&55&50&79&44&37&70&45&49\\Y&152&48&22&35&43&171&13&185&25\end{array}[/tex]
To find the line of best fit for the points:
Step 1: Find [tex]X\cdot X[/tex] and [tex]X\cdot Y[/tex] as it was done in the table
Step 2: Find the sum of every column:
[tex]\sum{X} = 479 ~,~ \sum{Y} = 694 ~,~ \sum{X \cdot Y} = 32784 ~,~ \sum{X^2} = 26897[/tex]
Step 3: Use the following equations to find a and b:
[tex]\begin{aligned} a &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = \frac{ 694 \cdot 26897 - 479 \cdot 32784}{ 9 \cdot 26897 - 479^2} \approx 234.56158 \\ \\b &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = \frac{ 9 \cdot 32784 - 479 \cdot 694 }{ 9 \cdot 26897 - \left( 479 \right)^2} \approx -2.95835\end{aligned}[/tex]
Step 4: Assemble the equation of a line
[tex]\begin{aligned} y~&=~a ~+~ b \cdot x \\y~=~234.56158 ~-~ 2.95835\cdot x\end{aligned}[/tex]
The graph of the regression line is:

