Respuesta :

Answer:

The perimeter of triangle is 19.8 units

Step-by-step explanation:

we know that

The perimeter of triangle ABC is

[tex]P=AB+BC+AC[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

step 1

Find the distance AB

we have

[tex]A(-2,3),B(3,0)[/tex]

substitute in the formula

[tex]d=\sqrt{(0-3)^{2}+(3+2)^{2}}[/tex]

[tex]d=\sqrt{(-3)^{2}+(5)^{2}}[/tex]

[tex]d_A_B=\sqrt{34}\ units[/tex]

step 2

Find the distance BC

we have

[tex]B(3,0),C (-4,-3)[/tex]

substitute in the formula

[tex]d=\sqrt{(-3-0)^{2}+(-4-3)^{2}}[/tex]

[tex]d=\sqrt{(-3)^{2}+(-7)^{2}}[/tex]

[tex]d_B_C=\sqrt{58}\ units[/tex]

step 3

Find the distance AC

we have

[tex]A(-2,3),C (-4,-3)[/tex]

substitute in the formula

[tex]d=\sqrt{(-3-3)^{2}+(-4+2)^{2}}[/tex]

[tex]d=\sqrt{(-6)^{2}+(-2)^{2}}[/tex]

[tex]d_A_C=\sqrt{40}\ units[/tex]

step 4

Find the perimeter

[tex]P=AB+BC+AC[/tex]

substitute the values

[tex]P=\sqrt{34}+\sqrt{58}+\sqrt{40}[/tex]

[tex]P=19.8\ units[/tex]