contestada

If two firecrackers produce a sound level of 86 dB when fired simultaneously at a certain place, what will be the sound level if only one is exploded?

Respuesta :

Answer:

83dB

Explanation:

first we must convert decibels to intensity in [tex]W/m^2[/tex]

decibels: [tex]\beta =86dB[/tex]

we use the following equation for the conversion:

[tex]\beta =10log\frac{I}{I_{0}}[/tex]

Where [tex]I[/tex] is the intensity corresponding to the 86 decibels, and [tex]I_{0}[/tex] It is the minimum intensity that the human ear perceives:  [tex]I_{0}=1x10^{-12}W/m^2[/tex]

So replacing [tex]\beta[/tex], and clearing for [tex]I[/tex]

[tex]86dB=10log\frac{I}{I_{0}}[/tex]

[tex]8.6dB=log\frac{I}{I_{0}}[/tex]

Now we use the exponential of 10 because this will cancel the logarithm.

[tex]10^{8.6}=10^{log\frac{I}{I_{0}} }[/tex]

[tex]10^{8.6}=\frac{I}{I_{0}}[/tex]

[tex]({I_{0})10^{8.6}=I[/tex]

Since [tex]I_{0}=1x10^{-12}W/m^2[/tex] , we have:

[tex](1x10^{-12}W/m^2)10^{8.6}=I[/tex]

[tex]I=3.98x10^{-4}W/m^2[/tex]

And because instead of two firecrackers now is only one, the intensity is reduced by half:

[tex]\frac{I}{2}=\frac{3.98x10^{-4}W/m^2}{2}=1.99x10^{-4}W/m^2[/tex]

And now returning to the decibel unit:

[tex]\beta =10log\frac{I}{I_{0}}[/tex]

we want to find the decibel value [tex]\beta[/tex] corresponding to the new intensity [tex]I=1.99x10^{-4}W/m^2[/tex]

[tex]\beta =10log\frac{1.99x10^{-4}W/m^2}{1x10^{-12}W/m^2}[/tex]

[tex]\beta =10log\frac{199.05x10^6}[/tex]

[tex]\beta =10(8.2989)[/tex]

[tex]\beta =82.989dB[/tex]≈ 83dB

the sound level if only one is exploted is 83dB