Answer : The value of [tex]\Delta G_{rxn}[/tex] is -8.84 kJ/mol
Explanation :
The formula used for [tex]\Delta G_{rxn}[/tex] is:
[tex]\Delta G_{rxn}=\Delta G^o+RT\ln Q[/tex] ............(1)
where,
[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction = ?
[tex]\Delta G_^o[/tex] = standard Gibbs free energy = -16.7 kJ/mol
R = gas constant = [tex]8.314\times 10^{-3}kJ/mole.K[/tex]
T = temperature = [tex]37.0^oC=273+37.0=310K[/tex]
Q = reaction quotient = [tex]\frac{product}{reactant}[/tex] = 21.1
Now put all the given values in the above formula 1, we get:
[tex]\Delta G_{rxn}=(-16.7kJ/mol)+[(8.314\times 10^{-3}kJ/mole.K)\times (310K)\times \ln (21.1)[/tex]
[tex]\Delta G_{rxn}=-8.84kJ/mol[/tex]
Therefore, the value of [tex]\Delta G_{rxn}[/tex] is -8.84 kJ/mol