How many lenses with different focal lengths can be obtained by combining two surfaces whose radii of curvature are 4.00 cm and 8.00 cm in absolute magnitude.

Respuesta :

Answer:

The lenses with different focal length are four.

Explanation:

Given that,

Radius of curvature R₁= 4

Radius of curvature R₂ = 8

We know ,

Refractive index of glass = 1.6

When, R₁= 4, R₂ = 8

We need to calculate the focal length of the lens

Using formula of focal length

[tex]\dfrac{1}{f}=(n-1)(\dfrac{1}{R_{1}}+\dfrac{1}{R_{2}})[/tex]

Put the value into the formula

[tex]\dfrac{1}{f}=(1.6-1)(\dfrac{1}{4}+\dfrac{1}{8})[/tex]

[tex]\dfrac{1}{f}=\dfrac{9}{40}[/tex]

[tex]f=4.44\ cm[/tex]

When , R₁= -4, R₂ = 8

Put the value into the formula

[tex]\dfrac{1}{f}=(1.6-1)(\dfrac{1}{-4}+\dfrac{1}{8})[/tex]

[tex]\dfrac{1}{f}=-\dfrac{3}{40}[/tex]

[tex]f=-13.33\ cm[/tex]

When , R₁= 4, R₂ = -8

Put the value into the formula

[tex]\dfrac{1}{f}=(1.6-1)(\dfrac{1}{4}-\dfrac{1}{8})[/tex]

[tex]\dfrac{1}{f}=\dfrac{3}{40}[/tex]

[tex]f=13.33\ cm[/tex]

When , R₁= -4, R₂ = -8

Put the value into the formula

[tex]\dfrac{1}{f}=(1.6-1)(\dfrac{1}{-4}-\dfrac{1}{8})[/tex]

[tex]\dfrac{1}{f}=-\dfrac{9}{40}[/tex]

[tex]f=-4.44\ cm[/tex]

Hence, The lenses with different focal length are four.