Respuesta :

Answer: [tex]0.81\times 10^{16}[/tex] beta particles

Explanation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

Given mass = 14.0 g

Molar mass = 137 g/mol

[tex]\text{Number of moles of cesium}=\frac{14.0g}{137g/mol}=0.102moles[/tex]

According to avogadro's law, 1 mole of every substance weighs equal to its molecular mass and contains avogadro's number [tex]6.023\times 10^{23}[/tex] of particles.

1 mole of cesium contains atoms =  [tex]6.023\times 10^{23}[/tex]

0.102 moles of cesium contains atoms =  [tex]\frac{6.023\times 10^{23}}{1}\times 0.102=0.614\times 10^{23}[/tex]

The relation of atoms with time for radioactivbe decay is:

[tex]N_t=N_0\times \frac{1}{2}^{\frac{t}{t_{\frac{1}{2}}}}[/tex]

Where [tex]N_t[/tex] =atoms left undecayed

[tex]N_0[/tex] = initial atoms

t = time taken for decay = 3 minutes

[tex]{t_{\frac{1}{2}}}[/tex] = half life = 30.0 years = [tex]1.577\times 10^7[/tex] minutes

The fraction that decays  :  [tex]1-(\frac{1}{2})^{\frac{3}{1.577\times 10^7}}=1.32\times 10^{-7}[/tex]

Amount of particles that decay is  = [tex]0.614\times 10^{23}\times 1.32\times 10^{-7}=0.81\times 10^{16}[/tex]

Thus [tex]0.81\times 10^{16}[/tex] beta particles are emitted by a 14.0-g sample of cesium-137 in three minutes.