Respuesta :

Answer:

minimum value of function is   [tex]\frac{45}{8}[/tex] .

Step-by-step explanation:

Given function represents a parabola.

Now, here coefficient of [tex]x^{2}[/tex] is positive , so the parabola will be facing upwards and thus the function will be having a minimum.

Now, as we know that minimum value of a parabolic function occurs at

x = [tex]\frac{-b}{4a}[/tex] .

Where , b represents the coefficient of x and a represents the coefficient of [tex]x^{2}[/tex] .

here, a = 2 , b = -6

Thus [tex]\frac{-b}{4a}[/tex] = [tex]\frac{6}{8}[/tex]

                                            =  [tex]\frac{3}{4}[/tex]

So, at x =  [tex]\frac{3}{4}[/tex]  minimum value will occur and which equals

y = 2×[tex]\frac{9}{16}[/tex] - [tex]\frac{18}{4}[/tex] + 9 =  [tex]\frac{45}{8}[/tex] .

Thus , minimum value of function is   [tex]\frac{45}{8}[/tex] .

Otras preguntas