contestada

Find the inverse of the given​ matrix, if it exists.Aequals=left bracket Start 3 By 3 Matrix 1st Row 1st Column 1 2nd Column 0 3rd Column negative 2 2nd Row 1st Column 4 2nd Column 1 3rd Column 3 3rd Row 1st Column negative 4 2nd Column 2 3rd Column 3 EndMatrix right bracket 1 0 −2 4 1 3 −4 2 3

Respuesta :

Answer:

[tex]A^{-1}=\left[ \begin{array}{ccc} \frac{1}{9} & \frac{4}{27} & - \frac{2}{27} \\\\ \frac{8}{9} & \frac{5}{27} & \frac{11}{27} \\\\ - \frac{4}{9} & \frac{2}{27} & - \frac{1}{27} \end{array} \right][/tex]

Step-by-step explanation:

We want to find the inverse of [tex]A=\left[ \begin{array}{ccc} 1 & 0 & -2 \\\\ 4 & 1 & 3 \\\\ -4 & 2 & 3 \end{array} \right][/tex]

To find the inverse matrix, augment it with the identity matrix and perform row operations trying to make the identity matrix to the left. Then to the right will be inverse matrix.

So, augment the matrix with identity matrix:

[tex]\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 4&1&3&0&1&0 \\\\ -4&2&3&0&0&1\end{array}\right][/tex]

  • Subtract row 1 multiplied by 4 from row 2

[tex]\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 0&1&11&-4&1&0 \\\\ -4&2&3&0&0&1\end{array}\right][/tex]

  • Add row 1 multiplied by 4 to row 3

[tex]\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 0&1&11&-4&1&0 \\\\ 0&2&-5&4&0&1\end{array}\right][/tex]

  • Subtract row 2 multiplied by 2 from row 3

[tex]\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 0&1&11&-4&1&0 \\\\ 0&0&-27&12&-2&1\end{array}\right][/tex]

  • Divide row 3 by −27

[tex]\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 0&1&11&-4&1&0 \\\\ 0&0&1&- \frac{4}{9}&\frac{2}{27}&- \frac{1}{27}\end{array}\right][/tex]

  • Add row 3 multiplied by 2 to row 1

[tex]\left[ \begin{array}{ccc|ccc}1&0&0&\frac{1}{9}&\frac{4}{27}&- \frac{2}{27} \\\\ 0&1&11&-4&1&0 \\\\ 0&0&1&- \frac{4}{9}&\frac{2}{27}&- \frac{1}{27}\end{array}\right][/tex]

  • Subtract row 3 multiplied by 11 from row 2

[tex]\left[ \begin{array}{ccc|ccc}1&0&0&\frac{1}{9}&\frac{4}{27}&- \frac{2}{27} \\\\ 0&1&0&\frac{8}{9}&\frac{5}{27}&\frac{11}{27} \\\\ 0&0&1&- \frac{4}{9}&\frac{2}{27}&- \frac{1}{27}\end{array}\right][/tex]

As can be seen, we have obtained the identity matrix to the left. So, we are done.