Respuesta :

Answer:

The three points for the line 2x - 4y = 20 are

point A( x₁ , y₁) ≡ ( 0 ,-5)

point B( x₂ , y₂) ≡ (2 , -4)

point C( x₃ ,y₃)  ≡ (10 , 0)

Step-by-step explanation:

Given:

[tex]2x-4y=20\\[/tex]........... equation of a line

Let the points be point A, point B and point C

To Find:

point A( x₁ , y₁) ≡ ?

point B( x₂ , y₂) ≡ ?

point C( x₃ ,y₃)  ≡ ?

Solution:

For Drawing a graph we require minimum two points but we will have here three points.

For point A( x₁ , y₁)

Put x = 0 in the given equation we get

2 × 0 -4y = 20

-4y = 20

∴ y = -5

point A( x₁ , y₁) ≡ ( 0 ,-5)

For point B( x₂ , y₂)

Put x = 2 in the given equation we get

2 × 2 -4y = 20

-4y = 20 -4

-4y = 16

∴ y = -4

point B( x₂ , y₂) ≡ (2 , -4)

For point C( x₃ ,y₃)

Put y= 0 in the given equation we get

2x - 4 × 0 =20

2x = 20

x =10

point C( x₃ ,y₃)  ≡ (10 , 0)

Therefore,

The three points for the line 2x - 4y = 20 are

point A( x₁ , y₁) ≡ ( 0 ,-5)

point B( x₂ , y₂) ≡ (2 , -4)

point C( x₃ ,y₃)  ≡ (10 , 0)

Ver imagen inchu420