graph by completing a table of x and y values to find the least three points on the line 2x-4y=20, algebraically. PLEASE HELP!!

Answer:
The three points for the line 2x - 4y = 20 are
point A( x₁ , y₁) ≡ ( 0 ,-5)
point B( x₂ , y₂) ≡ (2 , -4)
point C( x₃ ,y₃) ≡ (10 , 0)
Step-by-step explanation:
Given:
[tex]2x-4y=20\\[/tex]........... equation of a line
Let the points be point A, point B and point C
To Find:
point A( x₁ , y₁) ≡ ?
point B( x₂ , y₂) ≡ ?
point C( x₃ ,y₃) ≡ ?
Solution:
For Drawing a graph we require minimum two points but we will have here three points.
For point A( x₁ , y₁)
Put x = 0 in the given equation we get
2 × 0 -4y = 20
-4y = 20
∴ y = -5
∴ point A( x₁ , y₁) ≡ ( 0 ,-5)
For point B( x₂ , y₂)
Put x = 2 in the given equation we get
2 × 2 -4y = 20
-4y = 20 -4
-4y = 16
∴ y = -4
∴ point B( x₂ , y₂) ≡ (2 , -4)
For point C( x₃ ,y₃)
Put y= 0 in the given equation we get
2x - 4 × 0 =20
2x = 20
x =10
∴ point C( x₃ ,y₃) ≡ (10 , 0)
Therefore,
The three points for the line 2x - 4y = 20 are
point A( x₁ , y₁) ≡ ( 0 ,-5)
point B( x₂ , y₂) ≡ (2 , -4)
point C( x₃ ,y₃) ≡ (10 , 0)