Respuesta :

gmany

Answer:

2.01 cm

Step-by-step explanation:

The formula of a volume of a sphere:

[tex]V=\dfrac{4}{3}\pi R^3[/tex]

R - radius

We have

[tex]V=34\ cm^3[/tex]

Substitute:

[tex]\dfrac{4}{3}\pi R^3=34[/tex]    multiply both sides by 3

[tex]3\!\!\!\!\diagup^1\cdot\dfrac{4}{3\!\!\!\!\diagup_1}\pi R^3=(3)(34)[/tex]

[tex]4\pi R^3=102[/tex]         divide both sides by 4

[tex]\dfrac{4\pi R^3}{4}=\dfrac{102}{4}[/tex]

[tex]\pi R^3=\dfrac{51}{2}[/tex]          divide both sides by π

[tex]\dfrac{\pi R^3}{\pi}=\dfrac{\frac{51}{2}}{\pi}[/tex]

[tex]R^3=\dfrac{51}{2\pi}[/tex]   use π ≈ 3.14

[tex]\R^3\approx\dfrac{51}{(2)(3.14)}[/tex]

[tex]R^3\approx\dfrac{51}{6.28}\\\\R^3\approx8.121\to R\approx\sqrt[3]{8.121}\\\\R\approx2.01\ cm[/tex]