Answer:
Step-by-step explanation:
The formula of a volume of a sphere:
[tex]V=\dfrac{4}{3}\pi R^3[/tex]
R - radius
We have
[tex]V=34\ cm^3[/tex]
Substitute:
[tex]\dfrac{4}{3}\pi R^3=34[/tex] multiply both sides by 3
[tex]3\!\!\!\!\diagup^1\cdot\dfrac{4}{3\!\!\!\!\diagup_1}\pi R^3=(3)(34)[/tex]
[tex]4\pi R^3=102[/tex] divide both sides by 4
[tex]\dfrac{4\pi R^3}{4}=\dfrac{102}{4}[/tex]
[tex]\pi R^3=\dfrac{51}{2}[/tex] divide both sides by π
[tex]\dfrac{\pi R^3}{\pi}=\dfrac{\frac{51}{2}}{\pi}[/tex]
[tex]R^3=\dfrac{51}{2\pi}[/tex] use π ≈ 3.14
[tex]\R^3\approx\dfrac{51}{(2)(3.14)}[/tex]
[tex]R^3\approx\dfrac{51}{6.28}\\\\R^3\approx8.121\to R\approx\sqrt[3]{8.121}\\\\R\approx2.01\ cm[/tex]