Answer:
[tex]\large\boxed{y=-8x^2-8x+48}[/tex]
Step-by-step explanation:
The standard form of an equation of a parabola:
[tex]y=ax^2+bx+c[/tex]
We have
[tex]y=-8(x+3)(x-2)[/tex] use distributive property: a(b + c) = ab + ac
[tex]y=\bigg((-8)(x)+(-8)(3)\bigg)(x-2)[/tex]
[tex]y=(-8x-24)(x-2)[/tex] use FOIL: (a + b)(c + d) = ac+ ad + bc + bd
[tex]y=(-8x)(x)+(-8x)(-2)+(-24)(x)+(-24)(-2)[/tex]
[tex]y=-8x^2+16x-24x+48[/tex] combine like terms
[tex]y=-8x^2+(16x-24x)+48\\\\y=-8x^2-8x+48[/tex]