Determine the vapor pressure of a solution at 25°C that contains 76.6 g of glucose (C6H12O6) in 250.0 mL of water. The vapor pressure of pure water at 25°C is 23.8 torr.70.8 torr7.29 torr72.9 torr22.9 torr23.1 torr

Respuesta :

Answer: The vapor pressure of solution is 23.1 torr

Explanation:

To calculate the mass of water, we use the equation:

[tex]\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}[/tex]

Density of water = 1 g/mL

Volume of water = 250.0 mL

Putting values in above equation, we get:

[tex]1g/mL=\frac{\text{Mass of water}}{250.0mL}\\\\\text{Mass of water}=(1g/mL\times 250.0mL)=250g[/tex]

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]      .....(1)

  • For glucose:

Given mass of glucose = 76.6 g

Molar mass of glucose = 180.2 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of glucose}=\frac{76.6g}{180.2g/mol}=0.425mol[/tex]

  • For water:

Given mass of water = 250 g

Molar mass of water = 18 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of water}=\frac{250g}{18g/mol}=13.9mol[/tex]

Mole fraction of a substance is given by:

[tex]\chi_A=\frac{n_A}{n_A+n_B}[/tex]

Mole fraction of glucose, [tex]\chi_{(glucose)}=\frac{0.425}{0.425+13.9}=0.030[/tex]

As, the relative lowering of vapor pressure is directly proportional to the amount of dissolved solute.

The equation used to calculate relative lowering of vapor pressure follows:

[tex]\frac{p^o-p_s}{p^o}=i\times \chi_{solute}[/tex]

where,

[tex]\frac{p^o-p_s}{p^o}[/tex] = relative lowering in vapor pressure

i = Van't Hoff factor = 1 (for non electrolytes)

[tex]\chi_{solute}[/tex] = mole fraction of solute = 0.030

[tex]p^o[/tex] = vapor pressure of pure water = 23.8 torr

[tex]p_s[/tex] = vapor pressure of solution = ?

Putting values in above equation, we get:

[tex]\frac{23.8-p_s}{23.8}=1\times 0.030\\\\p_s=23.1torr[/tex]

Hence, the vapor pressure of solution is 23.1 torr