The system's tension is 616 N and acceleration is 5.6 [tex]m / s^{2}[/tex]
Explanation:
From newton’s second law of motion which state that net force acting on a body is product of mass of a body and acceleration of a body which is given as,
[tex]F_{n e t}=m_{t o t} \times a[/tex]
Where,
[tex]F_{n e t}[/tex] is net force acting on body
[tex]m_{\mathrm{tot}}[/tex] is mass of body
a is acceleration of body
Given values
Table mass (m) = 30 kg
Hanging mass (m) = 40 kg
[tex]a=\frac{F_{n e t}}{m_{\mathrm{tot}}}=\frac{m \times g}{m_{\mathrm{tot}}}[/tex]
Put the value for m = hanging mass = 40 kg and [tex]g=9.8 \mathrm{m} / \mathrm{s}^{2}[/tex], we get
[tex]a=\frac{40 \times 9.8}{30+40}=\frac{392}{70}=5.6 \mathrm{m} / \mathrm{s}^{2}[/tex]
The tension in the ropes, [tex]T=(m \times g)+(m \times a)[/tex]
Here, m as hanging mass
T = tension, N or [tex]k g m / s^{2}[/tex]
m = mass, kg
g = gravitational force, [tex]9.8 \mathrm{m} / \mathrm{s}^{2}[/tex]
a = acceleration, [tex]m / s^{2}[/tex]
[tex]T = (40 \times 9.8)+(40 \times 5.6) = 392+224 = 616 N[/tex]