Respuesta :

Answer:

[tex]y=100(1.1^t)[/tex]

Step-by-step explanation:

we know that

The exponential function is of the form

[tex]y=a(b^t)[/tex]

where

y ---> the number of trucks

t ----> is the time in years

a ---> is the initial value (number of trucks for t=0)

b is the base

r is the rate

b=(1+r)

In this problem we have

[tex]a=100\ trucks[/tex]

substitute

[tex]y=100(b^t)[/tex]

we have the point (1,110)

For t=1 year, y=110 trucks

substitute

[tex]110=100(b^1)[/tex]

solve for b

[tex]110=100b[/tex]

[tex]b=110/100=1,1[/tex]

The rate of growth is

[tex]r=b-1=1.1-1=0.10=10\%[/tex]

the exponential equation is equal to

[tex]y=100(1.1^t)[/tex]

Verify for the third point of the table

For t=2 years

[tex]y=100(1.1^2)=121\ trucks[/tex] ---->is correct