Respuesta :

Answer:

y = -2 (none of the options)

Step-by-step explanation:

Horizontal Asymptotes

A function f is said to have a horizontal asymptote y=a, if  

[tex]\displaystyle \lim _{x\rightarrow -\infty }f(x)=a[/tex]

Or,

[tex]\displaystyle \lim _{x\rightarrow +\infty }f(x)=a[/tex]

The function provided in the question is

[tex]\displaystyle f(x)=\frac{-2x^2+3x+6}{x^2+1}[/tex]

We compute the limit

[tex]\displaystyle \lim _{x\rightarrow \infty }\frac{-2x^2+3x+6}{x^2+1}[/tex]

Dividing by [tex]x^2[/tex]

[tex]\displaystyle \lim _{x\rightarrow \infty }\frac{-2+3/x+6/x^2}{1+1/x^2}[/tex]

Knowing that

[tex]\displaystyle \lim _{x\rightarrow \infty }\frac{K}{x^n}=0,\ n\geqslant 1[/tex]

The limit results

[tex]\displaystyle \lim _{x\rightarrow \infty }\frac{-2+0+0}{1+0}=-2[/tex]

The only horizontal asymptote is [tex]y=-2[/tex]

None of the options presented is correct

Answer:

I think its y = -3 because if you put this into a graph then you can see that a horizontal line does not touch the other lines

also if its

f(x) = (x^2 + 3x + 6) over (x^2 + 1) then i think its y = -1

hope this helps :D