Consider the Pythagorean Identity cos 2 ( θ ) + sin 2 ( θ ) = 1 cos2⁡(θ)+sin2⁡(θ)=1. Divide both sides of this identity by cos 2 ( θ ) cos2⁡(θ) and simplify the resulting equation. What is the result?

Respuesta :

Answer:

Therefore we have another identity:

[tex]\frac{cos^{2}\theta +sin^{2}\theta}{cos^{2}\theta*cos^{2}\theta}=\frac{1}{cos^{2}\theta*cos^{2}\theta}[/tex]

[tex]\frac{1}{cos^{2}\theta*cos^{2}\theta}=\frac{1}{cos^{2}\theta*cos^{2}\theta}[/tex]

Step-by-step explanation:

1) Considering the Pythagorean, or the Fundamental Trigonometric Identity Identity:

[tex]cos^{2}\theta +sin^{2}\theta =1[/tex]

2)Let's divide both sides, the left and the right one by:

[tex]cos^{2}\theta*cos^{2}\theta[/tex]

3) Since [tex]cos^{2}\theta +sin^{2}\theta[/tex] is equal to 1, then we can replace it. So

[tex]cos^{2}\theta +sin^{2}\theta =1\Rightarrow \frac{cos^{2}\theta +sin^{2}\theta}{cos^{2}\theta*cos^{2}\theta}=\frac{1}{cos^{2}\theta*cos^{2}\theta}\Rightarrow \frac{1}{cos^{2}\theta*cos^{2}\theta}=\frac{1}{cos^{2}\theta*cos^{2}\theta}[/tex]

Therefore we have another identity:

[tex]\frac{cos^{2}\theta +sin^{2}\theta}{cos^{2}\theta*cos^{2}\theta}=\frac{1}{cos^{2}\theta*cos^{2}\theta}[/tex]