Consider 4.8 pounds per minute of water vapor at 100 lbf/in2, 500 oF, and a velocity of 100 ft/s entering a nozzle operating at steady state and expanding adiabatically to the exit, where the pressure is 40 lbf/in2. The isentropic nozzle efficiency is 80.0%. Determine the velocity of the steam at the exit, in ft/s, and the rate of entropy production, in Btu/min·oR.

Respuesta :

Answer:

A) [tex]v_2 = 2016.80 ft/s[/tex]

B) [tex]\Delta s = 0.006 Btu/lbm R[/tex]  

Explanation:

Given data:

P-1 = 100 lbf/in^2

[tex]T_1 = 500[/tex] degree f

[tex]V_1 = 100 ft/s[/tex]

[tex]P_2 = 40 lbf/inc^2[/tex]

effeciency = 80%

from steady flow enerfy equation

[tex]h_1 +\frac{V_1^2}{2} = h_2 + \frac{V_2^2}{2}[/tex]

where h1 and h2 are inlet and exit enthalpy

for P1 = 100 lbf/in^2 and T1 = 500 degree F

[tex]H_1 = 1278.8 Btu/lbm[/tex]

[tex]s_1 = 1.708 Btu/lbm -R[/tex]

for P1 = 40 lbf/in^2

[tex]H_1 = 1193.5 Btu/lbm[/tex]

[tex]s_1 = 1.708 Btu/lbm -R[/tex]

exit enthalapy h_2

[tex]\eta = \frac{h_1 - h'_2}{ h_1 - h_2}[/tex]

[tex]0.80 = \frac{1278.8 - h'_2}{1278.8 -1193.5} = 1197.77 Btu/lbm[/tex]

from above equation

[tex]1278.8 \times 25037 + \frac{100^2}{2} = 1197.77   \times 25037 + \frac{v_2^2}{2} [/tex]                   [1 Btu/lbm = 25037 ft^2/s^2]

[tex]v_2 = 2016.80 ft/s[/tex]

b) amount of entropy

[tex]\Delta s = s_2 - s_1[/tex]

[tex]s_1 = 1.708 Btu/lbm -R[/tex]

at [tex]h_2 = 1197.77 Btu/lbm [\tex]  and [tex]P_2 = 40 lbf/in^2[/tex]

[tex]s_2 is 1.714 Btu/lbm -R[/tex]

[tex]\Delta s = 1.714 - 1.708 = 0.006 Btu/lbm R[/tex]