Find the vertical asymptote(s) of f of x equals quantity 2 x squared plus 3x plus 6 end quantity over quantity x squared minus 1.

x = −1, 1
x = 1, 2
x = −1, 2
x = −2, 2

Respuesta :

Answer:

x = −1, 1

Step-by-step explanation:

Vertical Asymptotes

A vertical asymptote of the graph of a given function f(x) is the line x=a, such that one of of these statements is fulfilled

[tex]\displaystyle \lim _{x\to a^{+}}f(x)=\pm \infty[/tex]

[tex]\displaystyle \lim _{x\to a^{+}}f(x)=\pm \infty[/tex]

If f(x) is a rational expression, we must find all the values of x who make the denominator equal to zero

[tex]\displaystyle f(x)=\frac{2x^2+3x+6}{x^2-1}[/tex]

We set the denominator to zero

[tex]x^2-1=0[/tex]

[tex](x-1)(x+1)=0[/tex]

[tex]x=-1,\ x=1[/tex]

Those are the vertical asymptotes of f

Answer:

x = −1, 1

Step-by-step explanation: