Respuesta :

The solution to the system is [tex](\frac{-16}{5},\frac{-64}{5})[/tex]

Step-by-step explanation:

Given equations are;

y+x= -11    Eqn 1

y=4x+5    Eqn 2

Putting value of y from Eqn 2 in Eqn 1

[tex](4x+5)+x=-11\\4x+5+x=-11\\5x=-11-5\\5x=-16[/tex]

Dividing both sides by 5

[tex]\frac{5x}{5}=\frac{-16}{5}\\\\x=\frac{-16}{5}[/tex]

Putting in Eqn 2;

[tex]y=4(\frac{-16}{5})+5\\\\y=\frac{-64}{5}+5[/tex]

Taking LCM

[tex]y=\frac{-64+25}{5}\\\\y=\frac{-39}{5}[/tex]

The solution to the system is [tex](\frac{-16}{5},\frac{-64}{5})[/tex]

Keywords: linear equation, substitution method

Learn more about substitution method at:

  • brainly.com/question/5723059
  • brainly.com/question/5639299

#LearnwithBrainly