Compare the peak wavelength of the radiation in the universe at the end of the era of nucleosynthesis with the peak wavelength of the radiation in the universe currently. Assume the temperature at the end of the era of nucleosynthesis was 10^9 kg.

Respuesta :

Answer:

[tex]2.89\times 10^{-12}\ m[/tex]

[tex]\lambda_m=2.75238\times 10^{-9}\lambda_{mc}[/tex]

Explanation:

b = Wien's displacement constant = [tex]2.89\times 10^{-3}\ mK[/tex]

T = Temperature = [tex]10^9\ K[/tex]

[tex]\lambda_m[/tex] = Peak wavelength

From Wien's displacement law we have

[tex]\lambda_m=\frac{b}{T}\\\Rightarrow \lambda_m=\frac{2.89\times 10^{-3}}{10^9}\\\Rightarrow \lambda_m=2.89\times 10^{-12}\ m[/tex]

The peak wavelength would be [tex]2.89\times 10^{-12}\ m[/tex]

Current peak wavelength is

[tex]\lambda_{mc}=\frac{b}{T}\\\Rightarrow \lambda_m=\frac{2.89\times 10^{-3}}{2.73}\\\Rightarrow \lambda_m=0.00105\ m[/tex]

Comparing

[tex]\frac{\lambda_m}{\lambda_{mc}}=\frac{2.89\times 10^{-12}}{0.00105}\\\Rightarrow \lambda_m=2.75238\times 10^{-9}\lambda_{mc}[/tex]

[tex]\lambda_m=2.75238\times 10^{-9}\lambda_{mc}[/tex]