Respuesta :

Answer:

Part a) [tex]BC=10\ units[/tex]

Part b) [tex]AC=13.66\ units[/tex]

Step-by-step explanation:

step 1

Find the length side BC

Applying the law of sines

we know that

[tex]\frac{AB}{sin(C)}=\frac{BC}{sin(A)}[/tex]

we have

[tex]AB=5\sqrt{2}\ units[/tex]

[tex]A=45^o[/tex]

[tex]C=30^o[/tex]

substitute

[tex]\frac{5\sqrt{2}}{sin(30^o)}=\frac{BC}{sin(45^o)}[/tex]

solve for BC

[tex]BC=\frac{5\sqrt{2}}{sin(30^o)}(sin(45^o))[/tex]

[tex]BC=10\ units[/tex]

step 2

Find the measure of angle B

we know that

The sum of the interior angles in a triangle must be equal to 180 degrees

so

[tex]m\angle A+m\angle B+m\angle C=180^o[/tex]

substitute the given values

[tex]45^o+m\angle B+30^o=180^o[/tex]

[tex]75^o+m\angle B=180^o[/tex]

[tex]m\angle B=180^o-75^o[/tex]

[tex]m\angle B=105^o[/tex]

step 3

Find the length side AC

Applying the law of sines

we know that

[tex]\frac{AB}{sin(C)}=\frac{AC}{sin(B)}[/tex]

we have

[tex]AB=5\sqrt{2}\ units[/tex]

[tex]A=45^o[/tex]

[tex]B=105^o[/tex]

substitute

[tex]\frac{5\sqrt{2}}{sin(30^o)}=\frac{AC}{sin(105^o)}[/tex]

solve for AC

[tex]AC=\frac{5\sqrt{2}}{sin(30^o)}(sin(105^o))[/tex]

[tex]AC=13.66\ units[/tex]