Respuesta :

Answer:

[tex]m\angle EFH=98\°[/tex]

Step-by-step explanation:

Given parallelogram EFGH for which

[tex]EF\parallel HG[/tex]

[tex]FG\parallel EH[/tex]           [By definition of parallelogram]

Given [tex]m\angle FGH=82\°[/tex]

To find [tex]m\angle EFH[/tex]

We will apply angle properties of a parallelogram to get the required angle.

By property of parallelogram,

1) Opposite angles are congruent to each other

2) Adjacent angles are supplementary.

From the given parallelogram we know that  [tex]m\angle FGH[tex] and [tex]m\angle EFH[/tex] are adjacent angles and thus they are supplementary angles by property of a parallelogram.

So, we can say.

[tex]m\angle FGH+m\angle EFH= 180\°[/tex] [By definition of supplementary angles]

Thus we have.

[tex]82\°+m\angle EFH= 180\°[/tex]

subtracting both sides by 82°

[tex]82\°+m\angle EFH-82\°= 180\°-82\°[/tex]

∴ [tex]m\angle EFH=98\°[/tex]

Ver imagen jitumahi456